Second Generation Charging Station

Progress Report Presentation

J. Alhabshy, R. Alzahrani, B. Gabrelcik, R. Murphy, R. Villezcas

January 21, 2015

Project Summary

This year's team was assigned the project of completing and improving last year's design of the 2nd Generation Charging Station. The station must

- Be mobile and therefore lightweight
- Charge the majority of small electronic devices
- Display the data of the power output in an interactive manner

Overview

Already Completed

- Bike status
- Ordered parts

In Progress

- Hardware testing
- Programming
- Bike stand and alternator mount

To be Completed

- Enclosure
- Display screen mount
- Aesthetics

Timeline

Completed So Far

- The previous year's bike has been disassembled of the gearing system and bike stand
- Parts for the new design have been selected and ordered
- Future parts for the build have been researched and selected

Bike Disassembly

- Most of the undesired components have been detached from the bicycle
- The DC motor and mount will also be removed

Parts Ordered

• Alternator – One Wire, Self Exciting, New, Aftermarket Product - \$64.93

• Capacitor – Power Acoustik 2.0 Farad Digital Power Capacitor - \$45.13

Bike Stand - RAD Portable Magnetic Work Put Bicycle Trainer - \$69.88

• Terminal Block – Isolated, Electric Barrier Terminal Block (Qty:4) - \$6.81

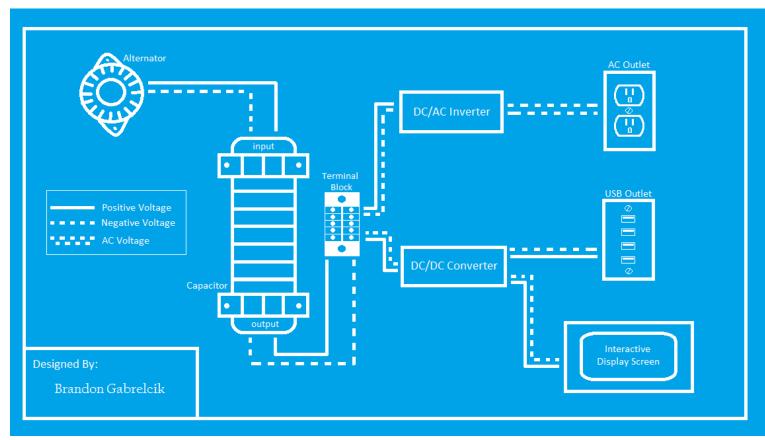
Tasks In Progress

- Alternator and capacitor are going to be set up for experimentation and testing
- An Interactive Display Screen will be designed/programmed using an Arduino microcontroller
- A mount on the bike stand for the alternator will be designed and built
- Electric Control System will be mapped out to properly fit the enclosure size

Alternator and Capacitor Testing

- The alternator will be analyzed to find its average power output, minimum required speed for start up and regular use
- The capacitor will be tested for how well it conditions the oscillating voltage from the alternator
- It will also be tested for how much power is stored inside after the alternator has been disconnected
- Both devices will be tested for fail safe procedures in the event of overcurrent output.

Interactive Display Screen


- The previous idea of using the Android LabVIEW software has been proven to be impossible to do with out its own server
- The new design will use an Arduino microcontroller with voltage and current sensors attached
- We aim to make a simple design with buttons used to interact with the screen
- We will display a type of dashboard view on the initial start up and will have live graphs and charts on additional pages.

Bike Stand and Alternator Mount

- The mount will be permanently attached to the bike stand for durability and simplicity
- The mount will first be built out of wood as a prototype and later from aluminum or another light weight metal.
- The mount will also have a feature (swivel, locking mechanism, etc.) that will allow the alternator to be engaged and disengaged

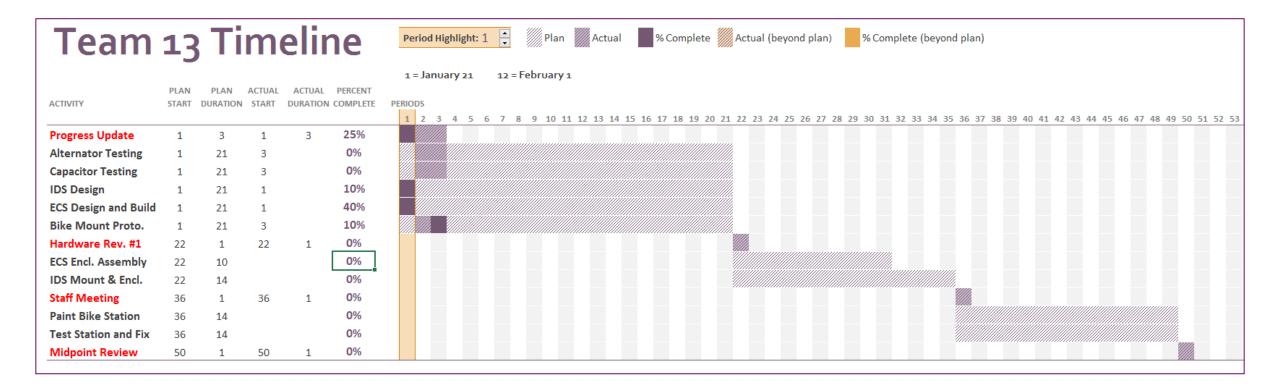
Electric Control System

The Electric Control System has been designed with simplicity and safety as top priorities.

To Be Completed In the Future

- Build and assemble the enclosure for the Electric Control System
- Design and build the mounting system for the display screen
- Carry out tasks that will make the charging station much more aesthetically pleasing
- Test the design and fix any bugs or problems that may arise

Build and Install both Enclosures


- The ECS (Electric Control System) enclosure has already been designed and only needs to the dimensions finalized in order to be built
- The Display Screen mount and enclosure still need to be designed before it can be built
- Both components will be built of the same material and with similar protective coatings to make them weather resistant

Make Project Aesthetically Pleasing

- The bike and enclosures need to be painted to improve looks as well as weather resistance
- The handle bars on the bike need to be re-wrapped and with tape that will hold up to the elements and continuous wear and tear
- Both tire treads need to be replaced to increase reliability of the bike
- The bike stand needs to be painted to match the color scheme of the rest of the bike

Project Build Timeline

Conclusion

Currently

- Bike is disassembled
- Parts are ordered (alternator, bike stand, capacitor, etc.)

Moving Forward

- Work on alternator mount design
- Design enclosure after all parts have been ordered
- Order Arduino microcontroller
- Research C++ programming language for the Arduino
- Work on the bike's aesthetics

Questions or Comments